Package: mixedMem 1.2.0
Y. Samuel Wang
mixedMem: Tools for Discrete Multivariate Mixed Membership Models
Fits mixed membership models with discrete multivariate data (with or without repeated measures) following the general framework of Erosheva et al (2004). This package includes a Variational EM and MCMC estimation approaches. Currently supported data types are Bernoulli, multinomial and rank (Plackett-Luce). The extended GoM model with fixed stayers from Erosheva et al (2007) is now also supported. See Airoldi et al (2014) for other examples of mixed membership models.
Authors:
mixedMem_1.2.0.tar.gz
mixedMem_1.2.0.zip(r-4.5)mixedMem_1.2.0.zip(r-4.4)mixedMem_1.2.0.zip(r-4.3)
mixedMem_1.2.0.tgz(r-4.4-x86_64)mixedMem_1.2.0.tgz(r-4.4-arm64)mixedMem_1.2.0.tgz(r-4.3-x86_64)mixedMem_1.2.0.tgz(r-4.3-arm64)
mixedMem_1.2.0.tar.gz(r-4.5-noble)mixedMem_1.2.0.tar.gz(r-4.4-noble)
mixedMem_1.2.0.tgz(r-4.4-emscripten)mixedMem_1.2.0.tgz(r-4.3-emscripten)
mixedMem.pdf |mixedMem.html✨
mixedMem/json (API)
# Install 'mixedMem' in R: |
install.packages('mixedMem', repos = c('https://ysamwang.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ysamwang/mixedmem/issues
Last updated 9 years agofrom:d830b4de68. Checks:ERROR: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | FAIL | Oct 30 2024 |
R-4.5-win-x86_64 | ERROR | Oct 30 2024 |
R-4.5-linux-x86_64 | ERROR | Oct 30 2024 |
R-4.4-win-x86_64 | ERROR | Oct 30 2024 |
R-4.4-mac-x86_64 | ERROR | Oct 30 2024 |
R-4.4-mac-aarch64 | ERROR | Oct 30 2024 |
R-4.3-win-x86_64 | ERROR | Oct 30 2024 |
R-4.3-mac-x86_64 | ERROR | Oct 30 2024 |
R-4.3-mac-aarch64 | ERROR | Oct 30 2024 |
Exports:computeAICcomputeBICcomputeELBOentropyPlotfindLabelsgetPosteriorEstimateshellingerDistancesmixedMemModelMCMCmixedMemModelVarInfmmMCMCFitmmVarInfFitpermuteLabelsplotPosteriorrmixedMemtheta.tablevizMemvizTheta
Dependencies:BHgtoolsR.methodsS3R.ooR.utilsRcppRcppArmadillo